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THEORY OF INELASTIC STRAIN BASED ON NONEQUILIBRIUM 

OF THE STATE OF THE MATERIAL 

E. I. Blinov and K. N. Rusinko UDC 539.374 

As any process which occurs at a finite rate, the inelastic strain of solids is al- 
ways a thermodynamically nonequilibrium process. The transition from the given state to 
the equilibrium state is completed by stress relaxation, which converts elastic strain to 
inelastic strain. The theory of the deformation of solids has been constructed within this 
framework. 

The basis of the classical theory of plasticity - the formation of inelastic strain 
when the given process is occurring in the equilibrium state - is only a convenient hypo- 
thesis [I, 2]. It leads to results which agree only with those experiments in which the 
rate of change in the external parameters is not greater than the rate of transition of the 
system (specimen) from the nonequilibrium state to the thermodynamically equilibrium state. 
In the theory of plasticity, such processes are referred to as quasistatic processes. In 
fact, fixing the external parameters in these processes means simultaneously fixing the 
parameters throughout the system as a whole. Indeed, nonequilibrium also exists during the 
process of plastic deformation, but the transition from this to the equilibrium state oc- 
curs only with a change in the external parameters - and is not seen after the latter be- 
come fixed. If the rate of change in these parameters is greater than the rate of tran- 
sition of the system from the nonequilibrium state to the equilibrium state, then the none- 
quilibrium remains even after the external parameters stop changing. ThUS, if they are 
fixed and subsequently kept constant, then the transition from the nonequilibrium state to 
the equilibrium state and associated phenomena, such as the formation of plastic strain, 
will continue until the establishment of thermodynamic equilibrium. The study of these 
phenomena was taken up in [3, 4]. 

If nonequilibrium during plastic deformation is not taken into account (and the state 
is assumed to be an equilibrium state), then, in accordance with the principle of the exis- 
tence of a ground state, such deformation is a reversible process [5-7], i.e. the laws of 
thermodynamics are violated. Thus, the process cannot occur in nature. It follows from 
this that the theory of plasticity is only a model representation of the phenomenon of 
plastic inelastic deformation. It describes it as a process which occurs under certain 
conditions. Neither the theoreticalor empirical accuracy requirements are high and the 
the existence of nonequilibrium is ignored. In fact, any inelastic deformation, including 
plastic deformation, is a nonequilibrium process. It is on this basis that the theory of 
plastic deformation has been constructed. 

i. Equilibrium and Nonequilibrium Stresses. Proceeding as in the nonequilibrium 
thermodynamics of solids and basing our theory on the main conservation laws and the prin- 

I ciples of objectivity, continuity, locality, and the existence of a ground state, we make 
the transition from an actual solid to a continuum and, within this continuum, we make 
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another transition from global parameters of volume and pressure to local parameters - the 
tensors of stress and strain at a point of the medium. Here, the state at a point of the 
continuum is determined by the state of a closed thermodynamic system. The latter system 
is a neighborhood of the given point which is small enough to characterize the state at the 
point and large enough to reflect the properties of the continuum. This "closed system," 
i.e. a system which exchanges energy but not mass with its environment, is referred to as a 

phenomenological element [2]. 
In accordance with the principle of the existence of a ground state, a phenomenologi- 

cal element is in a thermodynamically nonequilibrium state at each moment when it is being 
deformed at a finite rate. As was shown in [3, 4], this representation implies that the 
tensor of the stresses ai3 at each moment of irreversible strain is the sum of two tensor 

components: 

(~J : ~ u  + * ~ J ,  i, j = t ,  2, 3. (I.i) 

Here, ~• are components of the stress tensor in the equilibrium state corresponding to the 
given state; ~ij are components of the stress tensor characterizing the difference between 
the given state and its corresponding equilibrium state. Thus, ~ij = ~ij - ~lj o Following 
[3, 4], we will refer to the components of the tensor @ij as equilibrium components and will 
refer to the components of the tensor #iO as nonequilibrium components. 

We will make use of the information presented in [8] to elucidate the physical nature 
and properties of nonequilibrium stresses. In accordance with this information, the defor- 
mation of a polycrystalline element is determined not only by the magnitude and character 
of the mean bonding forces, but also by the properties and state of the submicroscopic 
structure of the crystal~ of the element - which undergo elastic distortion during loading. 
Of all of the possible structural distortions, we will focus on those which exist in a 
state of nonequilibrium and relax spontaneously at a temperature below the recrystalliza- 
tion temperature. As in [8], we will refer to stresses that are responsible for local 
elastic distortions of the lattice as local peak stresses. Being microscopic stresses over 
a characteristic local region, they are capable of reaching high values. On the one hand, 
local peak stresses increase with an increase in the loading rate and thereby help create a 
"nonequilibrium state" in the element. On the other hand, by simultaneously relaxing, they 
facilitate the transition of the element to the equilibrium state. The difference between 
the levels of the local peak stresses and the equilibrium stresses is the driving force 
behind relaxation as the process which converts elastic distortions of the lattice into 
residual (irreversible) strain. 

The following must be noted here. In [8], references to local distortions of the 
crystalline lattice and the resulting local peak stresses meant only those distortions 
whose relaxation resulted in the formation of additional residual strain. As was empha- 
sized in [8], the nature of this strain is the same as in plastic deformation. In the 
present study, we maintain the view that all irreversible (residual) deformation, including 
plastic deformation, is the result of a transition from a nonequilibrium state to an e- 
quilibrium state, i.e. at the microscopic level, it is the result of relaxation of the 
distorted structure of the element. 

It was stated in [9] that the main mechanism responsible for rapid (plastic) defor- 
mation and transient and steady creep of polycrystalline solids is shearing of the compo- 
nents of its crystalline grains. While agreeing with this, we add that any microscopic 
shear is possible only in the presence of a driving force. This force is the local gradi- 
ent of stresses in the form of the local peak stresses. Thus, irreversible strain is also 
examined within the framework of the nonequilibrium thermodynamics of solids. The entire 
phenomenon of irreversible deformation is determined by the aggregate effect of two oppo- 
site but interrelated thermodynamic processs: the formation and development of a nonequili- 
brium state in the form of distortions of the crystalline lattice of the element; the 
transition from the nonequilibrium state to the equilibrium state as a result of the remo- 
val of these distortions by relaxation. One of several types of irreversible strain - 
plastic, viscoelastic, or viscous - is realized, depending on the conditions under which 
relaxation occurs during the deformation process. 

Within the framework of the thermodynamic approach being proposed here, the nonequi- 
librium stresses are by definition the macroscopic measure of the local peak stresses, 
while the result of their relaxation is one or a combination of the above three types of 
irreversible strain. 
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We will formulate the law governing the relaxation of nonequilibrium stresses as the 
macroscopic measure of the local peak stresses. The law governing the relaxation of these 
stresses was presented in [8]. Let nonequilibrium stresses Ar ) be formed in an element 
during the time At. We assume that during the time du (u > r) the stresses Ar j decrease by 
an amount which is proportional to A~i 3. The rate at which this process takes place is 
reater, the shorter the time interval u- r. Thus, d(A~ij)= A%j(u)K(u- T)du (K(u- ~)! is 
e kernel, which decreases with an increase in u - r). The solution of the given equation 

s A~ij (t) = A~ij(T)Q(t, ~), +where 

from which 

Q ( t , ' O = e x p  --  ~ K (u --  "O du , (1.2) 

t 

~ j ( t ) - - 3  dr Q(t, z) dT. ( 1 . 3 )  
0 

The k e r n e l  o f  t h i s  r e l a t i o n  s h o u l d  be  such  t h a t  t h e  r i g h t  s i d e  o f  ( 1 . 3 )  e x p r e s s e s  t h e  main  
p r o p e r t i e s  o f  t h e  l o c a l  p e a k  s t r e s s e s .  For  e x a m p l e ,  f o l l o w i n g  [9] we c a n  p u t  

Q(t - ~) -= exp [ - - k ( t  - - z ) ] .  ( 1 . 4 )  

Since dr j is determined by the increment doi3 , then 

d~i j = qijm~dam~. (1.5) 

It was shown in [4] that the increment of the tensor of total strain (r is expres- 
sed in terms of the tensor of the nonequilibrium stresses and its increment in the follow- 
ing manner: 

(1.6) 

Inserting (1.5) and (1.4) into (1.3) and then inserting (1.3) into (1.6), we obtain the 
relation 

t 

de~j = a~;,~da.~n + gijrnn - 
0 

- -  exp [-- k (t --  ~)] dT dr. 

This is the fundamental relation in the strain theory that we are constructing on the basis 
of honequilibrium representations. 

2. Case of an Isotropic Solid. We will write differential tensor equation (1.6) for 
an isotropic material. Here, we require that its coefficients Ai3 ~ and Bi3mn take the same 
value in each coordinate system. We satisfy this requirement by taking Aij m and Bi3~a in 
the form of general isotropic tensors of rank four. In this case, we put 

Aijmn = 16ij6mn At- a16~mSjn + a25in6jm, 

Bi~mn = r6ijSm~ + b16~ra6jn + b26inSjm 

(l, r, aa, a2, bl, b 2 I are material constants). Inserting these values of Ai3 m and Bi3 m into 
(1.6) and taking into account the symmetry of the tensors of the nonequilibrium stresses 
(~bi3 = ~b31), we finally obtain 

d e l ] =  Ifi jd~ + ad~zj + (rfi?p + b ,  ii)dt, 

a = al + %, b = bl + b2, ~ = (I/3)~i~. ( 2 . 1 )  

For an isotropic material, Eq. (1.5) has the form 

( 2 . 2 )  
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Having inserted (2.2) into (1.3) and allowing for (1.4), we obtain 

t 

= - - ~ -  e . . p  [ - -  k ( l  - -  ~)1 dT. 
0 

(2.3)  

Here, we write Eq. (2.1) as 

t 

Ido (~) 
deq = A?.~jd(~ + 13d(~j + cSij. --d-U- exp [-- k (t --  ~)t dr dt + 

D 
t 

t d(rij (~:) 1 + g  ~ e x p [ - - k ( t - - ~ ) ] d ~ : d l ,  c~=~-(~ii. 
0 

(2.4) 

We determine the constants A and B in (2.4) with the strain increments by considering that, 
within the framework of the theory being constructed here, the only equilibrium strain is 
the reversible strain, i.e., the elastic strain found in accordance with Hooke's law. 
Thus, 

t + v (  3,, 60do ) + e , p [ - -  d ~ q = ~  do~) t + v  [ g o J ~  

' ] 
f d~ (~) exp [-- k (t - -  ~)] dr dt, + eS~ j --TY-- 
o 

l~ (t - ~)j d~ + 

(2.5) 

where ~ and ~ are the Lame constants; E is the Young's modulus; v is the Poisson's ratio; 
g, c, and k are constant coefficients. The terms in square brackets in the right side of 
Eq. (2.5) determine the inelastic deformation of the isotropic material (ainij(t)) over 
time: 

t 

" in ~ d~ij  (T) 
~ ( t )  = g - - T  exp [-- k (t --  r)] dr § 

0 

0 

(2.6) 

Here, the second term shows that the theory being constructed here describes the inelastic 
deformation which develops with changes in hydrostatic pressure. 

3. Determination of the Constants. The coefficients g, k, and c in Eq. (2.6) are 
material constants and are found from the following experiment. A specimen in the form of 
a thin-walled cylindrical tube is placed in tension at a constant rate. The tensile force 
is fixed beyond the yield point at a certain moment and is henceforth kept constant. 

For uniaxial loading, Eq. (2.6) takes the form 

t 
" in ~ C da z (z) i 
e~ = H j - - 2 ~ e x p [ - - k ( t - - T ) ] d v  , R = g  +--$-c (3.1) 

o 

or, after integration by parts, 

] i.[ ez = R a~( t ) - -k  a z ( x ) exp[ - - k ( t - - x ) ]d z  . (3 .2 )  
o 

We will describe an experiment involving the uniaxial tension of a specimen with sub- 
sequent holding under a constant stress. First let the specimen be subjected to tension at 
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a constant rate ~. Here, in accordance with (3.1) 

i e~(t) = ~ t (t - -  exp ( - -  kt)) 

Upon attainment of the value a z = al, for t = t i the stress becomes equal to a I 
atl, while the inelastic strain 

= a0 + 

si=-k -gin R "[t1__~ _I (i __ exp (_ kt~))] 

We will fix the stress a I and keep it constant. 
inelastic strain increases by the amount 

A  n(t) ' R (~1 [l - -  exp ( - -  kt)], 

the maximum value of which at t ~ ~ is 

A ini emax = Rcq/k .  

( 3 . 3 )  

T h e n ,  i n  a c c o r d a n c e  w i t h  ( 3 . 2 ) ,  t h e  

O ~ t ~ ,  

(3.4) 

The .results found here are adequate to determine the constants R and k. Assuming 
,in in 

that e~, Aema x /and t I are known from an experiment, we find from (3.4) that •/k Ae In j = max/G 1. 
I n s e r t i n g  t h i s  v a l u e  i n t o  ( 3 . 3 ) ,  we o b t a i n  a n  e q u a t i o n  t o  f i n d  t h e  c o e f f i c i e n t  k :  

". in t in S~Ol OaSmax 1 -  k + exp ( - - k t l )  = I .  
�9 i n  

6ASrnax 

Thus, the theory of nonequilibrium strain developed here on the basis of thermo- 
dynamic representations of nonequilibrium during the inelastic deformation of solids is 
consistent with known physical laws. It represents elastic strain as the result of the 
transition of a system from a nonequilibrium to an equilibrium state. As the system makes 
this transition, it approaches the boundary between plastic and viscous strain that was 
introduced artifically for expediency in performingtheoretical calculations. This boun- 
dary does not actually exist in physical processes. 
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